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Abstract—Random access mass storage has been a pillar of
computing since the 1956 delivery of the first IBM 350. The
interface paradigm of position then transfer is pervasive, despite
exponential advances in access speeds, transfer performance,
density, and reliability.

Consistency in interface paradigm does not mean that imple-
mentations have remained static, there have been numerous im-
provements: multiple heads, incremental positioning, recording
technologies, and storage caches. While multiple levels of storage
caches have become ubiquitous, caches are not a panacea. Caches
benefit physically sequential usage and repetitive use by reducing
physical media accesses. However, systems with hundreds or
thousands of actively accessed files can clog caches with data
that is only used a single time, yielding cache pollution.

Advances in semiconductors have vastly increased processing
power and memory capacity, particularly since 1990. Solid state
mass storage eliminates rotational delay, but can still have
other implementation-related delays. Hierarchical mass storage
provides the illusion of transparency, but as with virtual memory,
delays attributable to data migration between levels cannot be
concealed.

Through the 1980s, resource limitations obliged I/O infrastruc-
ture implementors to choose minimum resource implementations;
other choices were infeasible. Feasibility is mandatory; efficiency
and performance are desirable. Better resourced environments
allow higher efficiency and performance with some increase in
processing and memory consumption.

We will examine an approach that preserves the pre-existing
I/O API, with minimal culturally-compatible extensions that
enable higher performance and increased efficiency.

Index Terms—operating systems, mass storage, disk, in-
put/output, performance

I. INTRODUCTION

There is a fundamental disconnect between mass storage
efficiency and the inherent behavior of multiprogrammed
computing environments. Even simple mobile computers com-
monly have over a thousand active, independent threads,
independently accessing hundreds or thousands of files. The
different levels of abstraction, including files, volumes, and
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logical drives, among others, obscure the picture of actual
physical device activity, making it difficult to optimize physi-
cal device activity.

Mass storage efficiency has been an ongoing research area
since random-access mass storage debuted. One of the earliest
answers to device contention was “use more physical disks.”
Much research has focused upon systems with a limited
number of very active files. This focus has yielded some useful
insights, but these insights have often proven less than ideal
solutions, as was the case with deceptive idleness studied by
Iyer. [1], [2]

Storage device throughput improves with increased locality.
Most modern storage systems include one or more levels
of caching; locality of reference improves cache hit rate.
Classic rotating storage additionally benefits from reduced
seek and rotational latency. Solid-state storage benefits from
reduced operations. Hierarchical storage benefits from better
retrieval planning. Processor efficiency benefits from reduced
I/O delays.

Present 1/O workloads are far more heterogeneous and
dramatically more intense than in the past. Previous research
has focused on microcosms, exemplar systems with one or
a few highly active files and a single storage device. Event-
driven simulation is a challenge with complex workloads, as
there are numerous feedback loops in an I/O trace, small
changes in timing can have dramatic effects on the downstream
timeline, e.g., miss a sector on a classic rotating device, the
timeline for the device defers an entire rotation. Benchmarking
past a certain point requires extensive tests to understand the
performance curve.

By contrast, this paper will show an approach that sig-
nificantly improves throughput on systems with hundreds or
thousands of threads accessing large collections of files. The
approach does not require explicit synchronization between
any of the processes other than classic read/write locking
and arbitrary file fragmentation.The detailed derivation [3] is
too lengthy for this paper, but small examples illustrate the
benefits in common use cases, e.g., sequential processing of
highly fragmented files. The foundational concept is that to
achieve high performance, data transfers must be processed in
a “device friendly” sequence, rather than the block within file
sequence commonly implemented.



Between the file and the actual physical device, there may
also be multiple levels of virtualization.

Systematically eliminating unneeded serialization at all in-
termediate levels widens the optimization window at the lowest
levels, yielding higher performance.

II. HISTORY

The generic I/O architecture is the accumulation of design
choices, many made decades ago. Understanding the context
of those decisions allows us to revist previous choices in the
present context.

The 1956 introduction of the IBM 350 Disk Storage Unit
revolutionized computing. Built as a peripheral for the IBM
305 RAMAC, the IBM 350 shipped with a capacity of 5 MB
(later increased to 10 MB), with an average seek time of
600ms, and an average rotational latency of 25 ms (1,200
RPM). [4] IBM applied for patents, which were granted in
1964 and 1970. [5], [6]

Since that time, the speeds, capacities, and densities of
random-access storage have increased dramatically, Table I.

TABLE I
COMPARISON: IBM 305 (1956) [4] AND SEAGATE Ex0s X20 (2021) [7]

IBM 350 Model 1  Seagate Exos X20

Year 1956 2021
Media Rotation Speed (RPM) 1.2K (50ms) 15K (4 ms)
Recording Density (BPI) 100 1.065M
Total Capacity (MB) SMB 20,000,000MB
Physical Volume (m3) 1.934656 0.0004
Weight (kg) 1000 kg 0.670 kg

The essential elements of operating system /O mechanisms
were well-established by the mid-1960s, as exemplified by
IBM’s OS/360 and its descendants. [8], [9] Later minicom-
puter operating systems, e.g., Digital Equipment Corporation’s
RSX-11 family and Bell Labs’ UNIX' followed the same
pattern. [10], [11] Later operating systems including Microsoft
Windows, Sun’s Solaris, and Linux also have similar overall
I/O APIs, which remain unchanged to the present day. [12]-
[16] All have I/O APIs that convert a user-level request into a
system internal data structure. The generated data structure
describes the actual data transfer operation. The specified
processing is managed by a device driver, a kernel module
generally containing multiple entry points that implements
I/O-related operations under the supervision of a file system,
the software component that supervises volume usage and
space allocation.

Many find it difficult to comprehend the computing con-
text of that era, fifty years ago; mainframes with 1 MIPS
processing power and 1MB of memory were the apex of
the computing pyramid, operated by the largest corporations,
research establishments, and universities. Smaller systems
had but a fraction of these resources, e.g., the IBM Sys-
tem/360 Model 40 had 256KB of memory and clocked in at
0.034 MIPS. 1970s minicomputers were similar in capacity
and performance to the previous decade’s mainframes. As

a consequence, there was often less than 10KB memory
available for kernel structures.

The computing context changed dramatically by the 1990s.
Desktop systems with more than 100 MIPS processing power
and more than 100MB of main memory were common. The
increase in main memory made far larger kernel data structures
feasible.

Despite vastly expanded resource, core I/O architecture has
remained as originally conceived. While the I/O APIs are
pervasive throughout the pre-existing vast software base, the
internal plumbing underlying those APIs remains hidden and
not user-visible. While the syntax and semantics of the existing
I/0O API must be preserved, the underlying infrastructure can
be re-examined and re-considered in the present-day resource
context, provided the user-visible I/O interface semantics are
preserved.

III. PREVIOUS RESEARCH

Large scale 1/O tasks, e.g., sorting, tabulating, and search-
ing, have been the raison d’étre for data processing for more
than a century. Large-scale sorting and tabulating has been
a core major data processing tasks since the dawn of digital
computing. I/O performance is fundamental to that task. [17]
Fuller analyzed the low-level performance of rotating magnetic
storage devices. [18]

Iyer observed that related operations often follow shortly
after a previous operation. [1], [2] Iyer labeled this deceptive
idleness. He proposed that devices be reserved for a short
period of time after a request to see if a related request was
forthcoming. Deceptive idleness was sufficiently promising
that it was included in and made the default in Linux 2.6.0.
Apparently, deceptive idleness did not yield the hoped for
benefits, as Linux 2.6.33 deprecated the approach in favor of
Completely Fair Queueing.

One challenge in increasing mass storage performance is
the nature of the workload. An approach may seem to work
for one class of workloads while having serious shortcomings
with others. Experiments are often done in environments with
one, or a few, high demand processes.

In effect, we are searching for ways to increase storage
access efficiency akin to the use of multiprogramming to
improve CPU efficiency. Process contexts focus on program
counters, stacks, and register sets. Mass storage contexts center
on the fundamental nature of the mass storage device, e.g.,
rotation and seek positions for rotating storage; banking in
solid-state storage; and details of hierarchical storage. Target
device awareness of upcoming requests enables optimization.
Serializing requests at any level above that which is necessary
impedes optimization and performance.

Consider what happens when a user-program requests a
single n-block data transfer between a file F stored on mass
storage and a buffer located in main memory. The virtual
request, v may directly translate to a single request for a series
of sequential blocks on mass storage or it may transform into
as many as n separate operations on the underlying volume,
each for a discrete set of sequential mass storage blocks.



There is no guarantee that the sequence of blocks within a file
correlates in any way with how corresponding physical blocks
are stored on the underlying storage media. Issuing one request
at a time presumes just such a correlation. Issuing all of the
component requests simultaneously enables optimization by
storage device(s).

Consider a user-level file-based request v. Map v into an
unordered set £ = {lo,l1,...,l,} by completely mapping
v at one time. The resulting £ is unordered, there are no
dependencies between elements of £. Each [,, represents the
transfer of a particular contiguous segment of the request v. All
the n! permutations of £ are semantically equivalent. However,
it is clear that semantic equivalence does not carry over into
equivalent physical performance. Each ordered permtuation of
L has a different duration depending on the characteristics
and potentially varying state of the underlying mass storage
device(s).

Deceptive idleness is file or device centric. While consecu-
tive blocks within a file have a significant correlation to physi-
cal locations on an underlying physical volume, the correlation
is imperfect, particularly when one considers non-contiguous
files. [19] Even contiguous files may not be transferred in
sequence, depending upon many physical variables including:
caches; access arm position and rotational position in rotating
storage; banking and other factors for solid-state storage. Phys-
ical volumes are increasingly rare, having been supplanted by
logical volumes, virtualizations provided by intelligent storage
controllers. This change creates a more complex reality, as
there are several independent levels of abstraction underlying
logical volumes, with each level having its own independent
mapping. In turn, each of these mapping levels may mutate
over time. Multiple, non-static mappings make the notion of
“contiguous on a volume” a quaint anachronism.

Host operating systems cannot track the detailed internal
state of storage devices accessed. Storage devices serve multi-
ple hosts; they and their controllers may have multiple levels
of internal caches; and other factors. Any attempt by a host
operating system to model internal device/controller state is
fated to fail.

Lack of accurate knowledge relating to the storage environ-
ment fatally impairs optimization at host level. There are many
illustrative examples. Zoned Bit Recording (ZBR) is one. [20]

The anachronistic simple disk model is deeply enshrined in
operating system I/O implementations. Present storage devices
contradict the classic model in many ways. Rotating media
devices and/or the associated controllers almost alwasys have
caches. Solid-state storage, regardless of interface protocol,
e.g., SAS, SATA, NVMe, has neither rotational nor seek
delay, but may have caches and other non-uniformities. Multi-
level hierarchical storage subsystems are composed from a
collection of various storage technologies, each of which may
have its own sequence-dependent timing issues.

Examples abound.

Many operating systems attempt to model seek order-
ing to optimize request sequencing using the classic cylin-
der/head/sector (CHS) model of a disk. The CHS model

presumes that each disk track contains the same number of
sectors. By contrast, ZBR media has a variable number of
blocks/track. A fundamentally flawed model in concert with an
indeterminate mapping to the physical sphere leads to incorrect
or counterproductive optimizations.

Host-based ordering also does not take into account other
possibilities including: the presence of caches between the
host device driver and the physical media; and requests from
other hosts. Inaccurate models, based upon an incomplete or
incorrect presumptions lead to suboptimal choices.

Refocusing host operating system efforts from futile at-
tempts at optimization to feeding storage controllers and de-
vices the largest possible request pool, is far more productive.
The larger queue sizes offered by modern SAS and NVMe
device controllers is a ‘step in the right direction, however
full utilization requires changes above the block-storage layer.
Increasing queue length enables more processes to have si-
multaneously active requests to a mass storage device, but the
very increase in outstanding request sources, together with
unneccessary serialization higher in the I/O stack, increases
the time interval between successive, correlated requests from
a single source and increases the diversity of queued requests.

Eliminating serialization and queueing at hosts and in-
termediate levels provides storage controllers and devices a
more complete picture of the pending workload. Controllers
and storage devices are free to subdivide pending requests
and individually schedule each of the resulting sub-requests,
so long as the sub-requests are completed before the parent
request is considered completed, as required by the completion
semantics of the parent request, Fig 1. Physical configuration
and device knowledge is limited to the devices, which are
the only components that actually have accurate, actionable
knowledge of the physical device state.

IV. STANDARD SOLUTIONS

Through the first half of the 1980s, disk drives were
physically large and expensive. The emergence of personal
computers as a mass market item created incentives to produce
far cheaper, modest performance mass storage devices. In
1987, Patterson, Gibson and Katz described how aggrega-
tions of inexpensive drives could implement higher degrees
of performance and/or reliability. [22] The report included
a taxonomy of approaches, termed RAID, an acronym for
Redundant Arrays of Inexpensive Disks, including:

o RAID-0 Striping

e RAID-1 Mirroring
RAID-0 and RAID-1 often are combined, with the combina-
tion referred to as RAID-10

V. THE REALITY OF FILE SYSTEMS

Raw random access mass storage is simply block address-
able memory. Raw block addressable memory is not directly
useful to an application. It was not even a question in the
single user environments of the late 1950s, or later single
user, single-process operating systems of minicomputers and
personal computers, e.g., Digital Equipment Corporation DOS,
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Fig. 1. User-level requests R4 and Rp are expanded into independent sub-requests using mapping information into R0} - - Raj2), Bp[o], - BB[2),

each referring to a contiguous set of blocks within a volume. The device controller may in turn further subdivide those requests to reflect how the volume is
provisioned on actual media, e.g., RAID-0/1, logical volumes. Each of the resulting sub-requests is scheduled individually by the storage device according to
the physical context at the media level. The AST Entry, if present, is invoked to signal the completion of each request. Reprinted with permission from [21]



Digital Research DOS, or Microsoft MS/DOS. Applications
in general need to implement greater degrees of granularity,
structure, and protection. Abstraction is even more crucial in
multiple process and/or multi-user systems.

The first abstraction above a raw device is the concept
of files, ordered collections of mass storage blocks within
a storage volume. Operating systems use one or more file
systems to administer files within each volume of otherwise
indistinguishable blocks. File systems maintain data structures
and associated definitions collectively referred to as a file
structure. File systems also manage space allocation when files
are created, extended, and deleted, maintaining the mapping
between blocks within a file and the actual locations of those
blocks on the volume administered by the file system. [23]

Increasing the size of a file at a subsequent time, referred to
as extension, all but guarantees that the extended file is non-
contiguous, containing at least two sequences of blocks that
are discontiguous on the underlying storage volume.

Non-contiguous files are one of the most challenging factors
when improving effective mass storage performance. Space is
allocated as needed from the space available at the particular
instant in time the extend is processed.

However, the importance of contiguous files is not all that it
seems. A contiguous file is a useful simplification when using
a primitive file system to bootstrap a system. If a single file
dominates the I/O workload on a particular device performance
may benefit from the simpler mapping. In constrained memory
environments, data structure churn resulting from files with
hundreds or thousands of discontiguous storage segments is a
major problem. However, those problems are not always true
in recent decades with the increased multiprogramming work-
loads and increased memory resources. On a multiprogrammed
system, even a contiguous file accessed sequentially may
not eliminate inefficiency, as other simultaneously executing
programs may make other requests to the same physical
storage device.

A single program request for n blocks within a file may
or may not be a contiguous sequence within a volume. One
cannot presume any relationship, e.g., increasing physical
block number, between any two successive file blocks.

An initial allocation of 100 blocks may yield 100 blocks
starting at block 200000; or a series of up to 100 segments,
with block 200000 being only the first of the series. [19]

When file extension occurs at a later time, the extension is
allocated space in the context of the space available at that
instant in‘time. When the file is extended, the available space
could be in the 500000-block range or in the 10000-block
range. As at initial allocation, the space allocated could be
a contiguous block range, or some number of discontiguous
sub-ranges not less than the extension requested.

To make matters more complex, all requests are made
against a constantly changing background of thousands of
other executing threads, each of which may allocate or deal-
locate mass storage space.

It is difficult to transform the unpredictable potpourri of I/O
requests issued at the convenience of uncoordinated executing

programs into an efficient sequence of requests processed by
storage devices.

VI. RETHINKING PRESUMPTIONS

The general architecture of I/O processing evolved in an era
of memory scarcity, relatively primitive mass storage devices,
limited processing power, and lower degrees of multiprogram-
ming. The present environment is dominated by far larger
memory capacity and far greater processing power at all levels,
from hosts to physical devices.

Into the 1970s and 1980s, many systems lacked the memory
resources needed to support more than a handful of simulta-
neously outstanding I/O requests. [10] Larger main memo-
ries eliminate that restriction. Present systems have sufficient
memory to represent thousands of simultaneously pending 1/0O
requests.

The conceptual issues remain unchanged, but the engineer-
ing tradeoffs made to ensure correct operation in the face
of memory/processor scarcity can now be reexamined in the
current resource context.

VII. BASIC OS 1I/0 INTERFACE

User-mode programs are prohibited from directly accessing
actual hardware. User programs request I/O services by in-
voking an operating system function that creates a summary
of the request in system memory, e.g., buffer address, file
number, starting block, and length, and then places that request
summary on a queue for processing, Fig. 2.

Event Flag/Channel
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*AST
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Fig. 2. The basic I/O API call transfers a byte range within a file to memory
buffers, notifying the user-mode program upon completion. Reprinted with
permission from [21]

When a range of blocks within a file is accessed, the mem-
ory conserving approach processes one contiguous segment at
a time. While correct, such an approach sacrificies efficiency
for low-footprint. Even though the higher levels of the 1/0O
infrastructure are fully aware that additional segments will be



processed, serializing the requests denies this information to
the device and controller. [24], [25]

Device drivers dequeue each request in turn and perform
the processing needed to read/write the specified data from the
mass storage device. Drivers may be cascaded to implement
various aspects of the processing, e.g., a disk-class driver may
do certain processing common to all block-addressable mass
storage devices; followed by a device driver for a particular
device model; which may in turn use a SCSI or other bus-
focused device driver to actually access the communications
channel connecting the host processor to the peripheral bus.

Some requests may require multiple sub-requests to accom-
plish an individual request.

Some systems classify the file system as a device driver,
others use different terminology and structure. Naming is
purely nomenclature; the responsibilities of the role remain.

When all of the relevant sub-operations complete the initi-
ating request is completed and the next higher-level driver is
notified. Eventually, when all of the required sub-processing is
completed, the original program-issued request is completed
with appropriate notification to the requestor.

VIII. BUFFER MANAGEMENT

I/O requests are initiated by applications according to their
internal logic. When standard language or system-supplied
libraries are used to access files, it is common for underlying
libraries to read-ahead or write-behind to optimize sequential
reads and writes. Often, the buffer management strategy is to
keep as many buffers full as possible.

Classic recommendations for double buffering are
processor-centric. The focus of double buffering is prevent
a pause in processor activity. However, it does not speak to
transfer efficiency.

IX. IMPROVEMENTS

Exposing a single contiguous block range per file thread
obscures the already-known future from lower I/O processing
levels, e.g., the storage controller and device. Obscuring al-
ready inevitable requests cripples lower-level attempts to time-
optimize operations. On the contrary, optimization is most
feasible when lower-levels are aware of all pending sub-tasks
of a particular operation. Optimization is enabled when related
requests are delivered to the device closely spaced in time,
within the same optimization window; rather than serialized
as in the classic approach.

I/O specifications never specify the order in which requests
transfer data between main memory buffers and peripheral
devices; merely that the buffer contents are indeterminate from
lower-level request issuance till the lower-level device signals
request completion, successfully or not. [26]

Concentrating related requests in shorter time intervals
ensures that:

o There is a higher probability that track and other caches
will not experience churn from other streams contending
for cache entries; and

o The lowest-level controller(s) will have a better view of
the total request load, and be able to optimize for higher
performance.

It is common for controllers and devices to optimize se-
quencing of outstanding requests, with the proviso that the
requests are all in their respective queues simultaneously. If
higher levels throttle the issuance of requests, the requests
are not within the same optimization window, and cannot be
reordered..

X. OPERATING SYSTEM ACTIONS

Optimizing mass storage performance and efficiency re-
quires that the storage devices at the lowest levels of the
hierarchy have the information needed to sequence operations
in the most advantageous possible sequence. Put another way,
higher levels from the I/O API to the actual physical device
controller, must not take actions which obfuscate already
known information about inevitable I/O requests from lower
levels ‘of the /O infrastructure, Fig. 3. [27]

User Program !

Record Manager

File System

Virtual Device

Logical Device

5 Physical Medium

Fig. 3. 1/O Infrastructure has nested software/hardware levels between a user-
level request and the physical medium. Reprinted with permission from [21]

The operative principle is that intermediate level of the
I/O libraries or infrastructure may not queue requests unless
absolutely necessary. On the contrary, it is beneficial that all
higher-level actions concentrate requests for a particular file
into short, unordered, high-intensity bursts. Queueing at higher
levels obscures information from lower levels and distances
related requests in time, both of which foreclose lower-level
optimization opportunities.

The classic approach can be altered in implementation
without changing the user-visible API syntax or semantics,
preserving both the vast pre-existing codebase and the skillset
of the technical community.

The largest obstacle to optimizing low-level device work-
load scheduling is the presently truncated optimization hori-
zon. The most correlated requests are requests to the same file
coming from the same access stream, yet the upper levels of
the I/O infrastructure presently serialize requests at multiple
levels by enumerating £ one element at a time.



while some condition do
some processing

System request for 1/O
end while

Fig. 4. Write I/O System Call within inner loop. Limit checking omitted for
clarity.

Removing unneeded serialization reduces or eliminates
many structurally imposed limitations. [28]

When mapping within file requests to collections of logical
device requests, it is advantageous to decompose a file relative
request, v, file blocks 100-199, into [,, at once, creating an
unordered set £ of all the needed logical segments. Rather than
insert each request individually into the pending queue, it is
advantageous to first chain together the [ € £, then atomically
splice the resulting chain of sub-requests into the device queue
in an indivisible operation.

Indivisibly splicing £ into the queue solves the first mover
problem. If the device queue is empty the first sub-request
inserted potentially begins processing immediately. At that
instant, the only sub-request in the queue is, by definition,
the best choice for next operation. That choice may not
be advantageous, depending upon the precise state of the
hardware. Indivisibly splicing £ into the queue ensures that
all requests in that set are eligible for consideration before
any are executed, eliminating the first mover problem.

Higher in the I/O stack, there are other highly localized
changes that can increase the time density of related requests.

It not uncommon for programs, utilities, and libraries to go
into a loop issuing I/O requests to a particular file, Fig. 4.
The salient aspect of that loop is that it involves one system
call per iteration. Preserving the API interface is paramount.
However, there are many cases where the majority of paths
using the system I/O interface API are within a system or
third-party supplied library component. Replacing the pre-
existing I/O API is infeasible; however culturally-appropriate
enhancements are always possible.

Hoisting, the migration of iteration invariant computations
from within loops; has been a feature of code optimization
for decades. [29] Hoisting removes common sub-expressions
from within inner loops. Transitions to/from kernel mode
are relatively slow operations. Used properly, issuing tens or
hundreds<of I/O requests in the same system call, reduces
overhead processing, seamlessly reducing multiple system
calls to a single system call, Fig. 5. This eliminates context
switches between I/O request system calls. As at the device
driver level, this enhancement serves to increase the time
density of related requests.

In this context, the existing I/O API can be extended with
a new entry which allows the simultaneous issue of multiple
I/O requests on the same file, with completion signaling for
both the individual sub-requests and the request as a whole,
Fig. 6.

Pending buffer list o <~ A
while some condition do

[ < Buffer address, length, file offset

a+—aUp
end while
Write all buffers 8 € «
a— A

Fig. 5. Write I/O System Call hoisted outside of inner loop. Limit checking
omitted for clarity

Simultaneous request queueing for discontiguous file ranges
and buffer ranges, with individual sub-request completion
signaling, allows user processes to proceed, as sub-requests
complete.

Consider the case of sequential input. In the worst case,
where the first buffers are delivered last, the resulting perfor-
mance is no worse than the conventional case, e.g., buffers
processed sequentially. If the first buffers become available
earlier, then the user process can continue processing while
later buffers are being received.

By definition, individual sequential output buffers are fun-
gible. Once a buffer has been transferred to mass storage, the
buffer can be released for other use. If the user process is
stalled waiting for an available buffer, the process is able to
continue processing. As with sequential reads, the worst case
is the same as existing performance. The analysis for input
buffers is similar, empty buffers are fungible.

Multiple discontiguous memory buffers combined with dis-
contiguous file ranges are characteristic of databases and
other programs. In that case, the originating thread is often
building a list of buffers to be transferred between a file
and memory. Each of the individual read/write operations
are mutually independent. Individual read/write completion is
potentially completely disconnected from the completion of
other sub-requests. The overall completion offers the same
overall completion as Linux readv/writev is used to signal
the requestor that all sub-requests have been completed and
any related aggretate data structures can be released, Fig. 6.

Singly issued I/O requests are either completed or un-
completed. Buffer contents are undefined for the duration
of the I/O. Compound requests, e.g., System/360 channel
programs, Linux readv/writev, and the multiply-issued
requests described by this author are a completely different
question.

The IBM System/360 I/O System architecture contained
Program Controlled Interrupts (PCI), which reported execution
progress of an I/O channel command sequence to the CPU.
However, System/360 Channel Programs were in effect an
SISD architecture for a particular device, serial command
chains with simple conditional loops. The order of sub-
requests was essentially fixed. There was no potential for
reordering device operations to take advantage of physical-
level opportunities.
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Fig. 6. A single system call which queues multiple, independent requests
reduces aggregate overhead. Reproduced with permission from [21]

The Linux library has readv and writev calls, which
transfer discontiguous memory areas to a contiguous area of a
file. Completion is signaled when all transfers requested have
completed. readv/writev does not have a mechanism to
indicate completion of an individual buffer, nor does it have
the capacity to transfer discontiguous buffers to discontiguous
file regions.

The precise semantics of the multiple simultaneous issue
I/O API extension is critical to improving performance and
efficiency. The SISD limitation of System/360 channel pro-
grams limits the opportunity for re-ordering device requests_to
optimize storage device throughput. The complete/incomplete
dichotomy provided by Linux readv/writev delays further
processing until all buffers have been transferred, delaying
potential CPU progess.

Simultaneous multi-request issue, combined with individual
request completion, allows user programs to proceed with
processing at an earlier point than would otherwise be pos-
sible, Fig. 7. Requesting transfers in multiple request blocks
concentrates related requests in short bursts.

The differences between the approach described in this
paper differ from the earlier approaches of IBM System/360
channel programs and Linux readv/writev by providing far
more parallelism. This difference is summarized in Table II.

In this context, buffers are no longer about maintaining
processor efficiency, but about maximizing both processor
and peripheral performance. The goal is to ensure that there
is always a buffer available for the processor and transfer
requests are initiated to maximize device performance.

Previously, it was mentioned that how buffers are filled and
processed affects performance.

When memory was scarce, it was common to transfer a

TABLE II
COMPARISON OF SYSTEM/360 CHANNEL PROGRAMS, LINUX
READV/WRITEV, AND MULTIREQUESTS [21]

Individual Discontiguous
Parallel Buffer Block Range
Execution ~ Completion within file
IBM System/360 Channel No Yes Yes
Linux readv/writev undefined No No
Multi-issue Yes Yes Yes

single block at a time. More plentiful memory. makes more
extensive buffering physically possible, but leaves the question
of when to request data transfers between mass storage devices
and main memory to optimize performance.

The conventional approach used by systems supporting
multiple buffers is to request transfers between mass storage
and buffers at the earliest possible opportunity. If this strategy
is employed over time, there is a steady stream of buffer
requests as buffers are processed by the application. For an
application with a dedicated volume, this can work well. If
the application uses multiple large sequential files on the same
volume, multiple outstanding requests will build up, depending
on the delays in accessing the multiple files.

However, the most efficient sequence for information trans-
fer is for requests to related physical storage device areas be
simultaneously outstanding. This can be achieved by com-
pressing the time interval between related requests. Rather
than filling buffers as they become available, multiple transfers
to the same file can be requested simultaneously, increasing
the probability that multiple requests to closely related mass
storage addresses will be processed in close time proximity.
Simultaneity increases locality for both mass storage caches
and media access operations.

Transferring buffers as they become available for transfer
appears on the surface to optimize processor utilization, but
does not create corresponding opportunities for transfer opti-
mization by the storage subsystem and its components.

Transferring a single buffer at a time almost ensures that no
two buffers from the same access stream are pending at the
same time.

Deferring transfers until a number of buffers awaiting trans-
fer can be enqueued as a group yields multiple outstanding
requests for the same file, enabling storage system optimiza-
tion.

XI. STORAGE CONTROLLER ACTIONS

At the storage controller and device levels, many of the
issues that occur at the operating system level recur. It does
little good to eliminate the first mover problem on the host,
merely to re-encounter the issue at lower levels.

The grouping effect referred to at the user API-level applies
throughout the layers down to the storage device. Grouping
is preserved by creating a supra-individual request indicator.
When a related series of requests are transmitted by a host,
identifying the group as a whole serves this purpose. The
relevant rule is that one cannot include members of a group
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Fig. 7. Simultaneously initiated I/O requests individually complete, allowing processing to resume at the earliest possible time. Buffers A, B, and C are
awaiting processing. Buffers D — H are awaiting input transfers. In this example, transfers are from high LBN to low LBN. The minimum time transfer
sequence (indicated by the circled numbers) is in physical device space, which may be neither LBN order nor VBN order. Reproduced from [30] with

permission.

in device scheduling until such time as the entire group is
available for consideration. [21]

XII. SUMMARY

The general architecture of operating system I/O infrastruc-
ture supporting random access mass storage was conceived in
the 1960s and 1970s, an era of constrained:

e mass storage performance
« controller logic
e System memory

During that era, potential performance enhancements were
eschewed in favor of minimum resource footprint. Correctness
is obligatory; performance and efficiency are beneficial but
far less important. The user-level APIs to access mass storage
also incorporate the influence of these long-ago choices. Re-
source availability has dramatically increased since the tradeoff
decisions. Memory and processing capacity in host systems,
storage interconnects, storage controllers, and storage modules
have undergone massive growth. However, a vast universe of
software has been built to use existing I/O APIs. It is possible
to modify the I/O infrastructure for vastly higher performance
and efficiency while maintaining the existing user-level API
and existing storage devices.
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