
Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 1

© Copyright 2004, Hewlett Packard Development Company, L.P.

Inheritance Based Environments in

Stand-alone OpenVMS Systems and OpenVMS Clusters
By Robert Gezelter, CDP, CSA, CSE

Software Consultant
35-20 167th Street, Suite 215

Flushing, New York 11358-1731 USA
+1 (718) 463 1079

http://www.rlgsc.com
E-mail: Gezelter@rlgsc.com

Abstract

The goal of stand-alone or clustered configurations is to present the user, and
application, with a consistent operating environment regardless of the physical
technologies actually used to implement that environment.

Many OpenVMS Cluster systems include a multitude of different processors,
each with different peripheral configurations and capabilities. Many
organizations also have multiple stand-alone OpenVMS systems running
identical or nearly identical applications on different hardware configurations.
Disaster tolerant (DT) configurations can further complicate the environment by
introducing propagation delay and other consequences of physical differences
into the environment.

OpenVMS clustering technology was introduced before the popularization of
object-oriented terminology and the codification of its concepts. However,
object-oriented concepts, particularly inheritance, well describe OpenVMS in
clustered environments. Principles of inheritance are particularly apt when
implementing functionally identical environments upon different physical
environments. Architectures employing inheritance realize significant reductions
in total cost of ownership (TCO) and correspondingly large improvements in
portability and operational transparency.

In contrast with many other operating systems, the iterative nature of the
OpenVMS logical name facility enables the use of multiple levels of translation
with corresponding default values for each level. This flexibility permits
OpenVMS systems to assimilate dramatic changes in operating environment
with a change to a single logical name at a variety of levels, dramatically
reducing TCO.

http://www.rlgsc.com/
mailto:Gezelter@rlgsc.com

2 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

Introduction

The standard OpenVMS user environment conceptually rests upon two related, yet distinct
logical hierarchies:

• the four hierarchical levels of the logical name environment1 and

• the execution of the system-wide and user-specific login profiles2

The classification of users into groups, the separate identification of privileged user groups
(those identified as “System”), and all other users, suggests a natural hierarchical structure.
While these hierarchies are more than what many other operating systems provide, they still
are not fully reflective of many environments. The organization, the applications, and the
computing environment of today’s corporate organization are often more complex than a
single organization with easily identifiable, disjoint groups.

Many user environments are far richer in diversity than they appear at first glance, reflecting
users’ different collections of applications, their roles, and their responsibilities.

Computing environments are more than single instances of processors, memories, and
peripherals. The most critical elements of a well-configured OpenVMS environment reside in
the logical environment created by the system manager and application architect, not in the
specification of the bare hardware and software environment. The exact processor (VAX,
Alpha, or Itanium) and peripheral configuration of the system is far less important.

User environments are hierarchically nested. For example, an individual user is typically a
member of a group. In its turn, the group is a part of a company. Thus, an individual’s
application environment depends upon that person’s place in the organization. Similarly, the
group or department’s environment is merely an instance of the standard company-level
environment, tailored to the specific functions performed by that department. In a service
bureau or Applications Service Provider (generally referred to as an “ASP”) environment,
where multiple companies (or several sibling companies) share a system, there are also
company-wide environments, which are shared by all users at an individual company but
differ to some extent between different companies.

 1 LNM$SYSTEM (composed of LNM$SYSTEM_TABLE and LNM$SYSCLUSTER, which in turn really
translates to LNM$SYSCLUSTER_TABLE), LNM$GROUP, LNM$JOB, and LNM$PROCESS are part of the
user’s context created as part of the processing performed by $CREPRC.

 2 The system-wide login command file is located in SYS$MANAGER:SYLOGIN.COM; by default, the user-
specific login is in the user’s default directory. The user’s login can alternatively be placed in any private
or shared file that is accessible to the user through setting the appropriate fields of the user’s record in
the system UAF.

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 3

© Copyright 2004, Hewlett Packard Development Company, L.P.

A review of the mechanics of what happens when a user connects to an OpenVMS system is
appropriate at this point.

When a user logs on to an OpenVMS system, LOGINOUT.EXE creates a basic operating
environment consisting of:3

• the default directory, SYS$LOGIN

• the device upon which the default directory is located, SYS$LOGIN_DEVICE

• a scratch device/directory, SYS$SCRATCH

• the default device characteristics established by the command procedures executed
as part of the login process

• the logical name environment, which is a hierarchical list of names and translations of
names. The logical name tables are searched in a variety of situations when
commands and programs access a variety of resources, most commonly files and
queues. Generally speaking, translation continues until no more translations are
possible, each iteration starting again from the beginning. This feature is dramatically
different from the one-pass symbolic parameters available on other systems. A user
process’s actual logical name context is built by LOGINOUT.EXE and includes:

o the command files executed as part of login processing

o the job logical name table, specific to the job, referred to by the name
LNM$JOB4

o the group logical name table, applicable to all users who share the same UIC
Group number, LNM$GROUP5

o the system logical name table, LNM$SYSTEM

 3 For simplicity, we refer to the basic case of an interactive user. The start of a network or batch produces
similar results and follows a similar path. Creating processes that are neither interactive, batch, nor
network may create a similar environment, or may result in a slightly truncated environment (e.g.,
whether the /AUTHORIZE option is used on the RUN/DETACH command). Environmental truncation has
important implications for the proper operation of applications and facilities.

 4 LNM$JOB is itself a logical name, whose translation resides in the LNM$PROCESS_DIRECTORY as
LNM$JOB_XXXXXXXX, where XXXXXXXX is the eight-digit hexadecimal address of the Job Information
Block (see Goldenberg, Kenah, Dumas, “VAX/VMS Internals and Data Structures, Chapter 35, page
1073, first footnote)

 5 LNM$GROUP is itself a logical name, whose translation resides in the LNM$PROCESS_DIRECTORY as
LNM$GROUP_GGGGGG, where GGGGGG is the six-digit octal UIC group number (ibid.)

4 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

o the cluster logical name table, LNM$CLUSTER_WIDE6

• other process characteristics established as a part or consequence of login
processing.

These capabilities are generic, and straightforwardly support the construction of
environments based upon a simple cluster belonging to a single entity with groups of users,
each with their own profiles. However, environments are often not as straightforward.
Traditionally, complex environments have been implemented by explicitly invoking the
particulars of each environment from the individual user’s LOGIN.COM file. A user’s specific
environment is achieved by manually adding elements to the user’s login profile. This
method requires inordinate maintenance, is excessively fragile, and is virtually impossible to
manage.

 6 Introduced in OpenVMS Version 7.2 (OpenVMS Version 7.2 New Features Manual,
Order#AA-QSBFC-TE, July 1999)

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 5

© Copyright 2004, Hewlett Packard Development Company, L.P.

Philosophic Basis

OpenVMS provides a straightforward approach, founded upon the same architectural
principles as the operating system itself, which dramatically simplifies the creation of
customized environments. This can be accomplished with a minimum of complexity and
maintenance effort, and a high degree of manageability and scalability.

The basis of the simplification is the realization that while environments differ dramatically,
they do so in an orderly, systematic way, and those differences can be implemented with
minor, manager-level changes.

An approach based upon axes of variation, leveraging the strengths of OpenVMS and its
hierarchical logical name structure, is more robust, more auditable, and more maintainable
than the traditional explicit enumeration approach.

Environments can be characterized by multiple, independent axes of variation. For the
purposes of this paper, we will consider five axes of variation, although the concept can be
easily extended to address further axes of variation.

Clusterwide

System Configuration

 Site – specific

Firm/Group/User – specific

Application – specific

Figure 1 – Five illustrative independent axes of variation

The axes are considered independent; changes in the names comprising a single axis do not
imply changes in different axes. There is also no need to restrict name translation iterations
to a single axis.

6 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

There are five axes of variation referred to in this paper, namely:

Clusterwide Variations

Clusterwide variations reflect those differences that define the individual cluster as a whole.

Clusterwide variances are best dealt with using the clusterwide logical name table.7 The
clusterwide local name table is automatically included in the logical name resolution path,
LNM$FILE_DEV, at a lower precedence than that of the system-wide logical names
contained in LNM$SYSTEM.

System Configuration Variations

System specific variations reflect the particular needs of a particular system and its
hardware.

System specific variations are best dealt with by adding appropriate logical name definitions
to the standard system logical name table, LNM$SYSTEM.

Site-Specific Variations

Site-specific variability reflects the connection and capability differences that exist on a
specific site that is a member of a multi-site OpenVMS Cluster system.

While this axis of variation is not explicitly supported by OpenVMS, it can be added to
OpenVMS by the addition of a new, system-wide logical name table inserted in the search
path (LNM$FILE_DEV in LNM$SYSTEM_DIRECTORY or LNM$PROCESS_DIRECTORY)
between the systemwide and clusterwide logical name tables.

Firm/Group/User-Specific Variations

Some variations are specific to an individual’s organization, or place within the organizational
hierarchy.8 OpenVMS traditionally recognizes the group/department and user hierarchy with
UIC-based protection and the existence of the group logical name table. This existing axis of
variation can be extended and enhanced through slight adjustments to the login processing
and the logical name search path.

 7 Ibid

 8 Within this paper, we refer to this as firm, group, and user. Additional levels (e.g., division or region) can
easily be accommodated by similar means.

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 7

© Copyright 2004, Hewlett Packard Development Company, L.P.

Application-Specific Variations

Lastly, some environmental parameters are specific to a particular application. They may
overmap similar parameters from similar applications, but differ in that each user of the
application must have definitions in his or her logical name search path providing the value
for these parameters. Thus, applications can be completely parameter-driven by their
environment, with all of the implications of hierarchical defaulting.

One Parameter, One Line of Code

Another overall principal is that each definition should appear, like a common subroutine,
only once. Duplicate definitions are a major element in maintenance complexity and costs, as
well as an ongoing source of errors.

Dependency

The inclusion of all the definitions in the logical name search path allows different logical
names to be phrased in terms of other logical names in the search path. As an example, the
location of a file may be expressed as a logical name definition:

$ ASSIGN/PROCESS SYS$SCRATCH:VEHICLES.DAT DATABASE

which itself includes a reference to a definition in the user’s process logical name context (to
the logical name SYS$SCRATCH). In turn, SYS$SCRATCH may include a reference to the
logical name DISK$SCRATCH which might be defined in the group’s logical name table.
DISK$SCRATCH could also be defined in the system logical name table, LNM$SYSTEM.

8 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

This is the same approach used by OpenVMS itself. Many logical names are explicitly or
implicitly dependent on the definition of SYS$SYSROOT9 or SYS$SYSDEVICE. In practice,
multiple dependencies of logical names incur a generally insignificant cost.10

 9 Most of the SYS$ logical names are expressed in just such a way, in terms of SYS$SYSROOT. For
example, SYS$SYSTEM is defined as SYS$SYSROOT:[SYSEXE]. SYS$MANAGER is similarly defined as
SYS$SYSROOT:[SYSMGR]. SYS$SYSROOT is defined as a search list including both the system-
specific and clusterwide OpenVMS systems directories. Expanding this scheme to include additional
levels beyond system-specific and clusterwide is straightforward.

10 The processing costs associated with the rapid opening and closing of files and other operations is far
more significant. In any event, the labor costs and inflexibility of the approaches required to save the
logical name translations are far greater. In applications where thousands of records are processed, the
cost of a few extra logical name translations is negligible.

Migrating logical names from private copies in LNM$PROCESS to LNM$JOB or other logical name tables
with a wider purview increases performance by reducing the need to copy large numbers of process-
private logical names during SPAWN operations.

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 9

© Copyright 2004, Hewlett Packard Development Company, L.P.

Inheritance

Successive dependence, illustrated in the previous section, is a powerful technique.
Defaulting, a concept implicitly familiar to OpenVMS users in the guise of default file types,
and the traditional hierarchy of logical name tables, is a far more powerful mechanism than
generally realized. Viewed as a form of inheritance, defaulting is also a mechanism for
expressing the variability of user environments.

It has previously been remarked that each axis of variability embodies a hierarchical series of
qualifications within the axis. On the individual axis, users are members of groups; groups
are members of firms. On the cluster axis, the highest level is the cluster as a single entity;
within the cluster, there are sites; within the sites, there are individual cluster nodes.11

Hiding the Physical and the Organizational

The purpose of isolating the physical and organizational aspects of a user’s environment is
the same as the more familiar OpenVMS concepts of disk space management (virtual
blocks) and memory management (virtual memory). In the case of disk space and memory
management, the purpose is to free the application from managing the details of a specific
processor or device environment.

Adapting the same philosophy to users’ logical environments similarly allows the re-
organization of users and their hardware platforms without the need to explicitly re-engineer
each and every reference to the environment.

11 One could also argue that within nodes, there are individual realizations of nodes on particular

hardware. For example, the node ALPHA could run at different times on either an ES40 or with a pre-
configured alternative configuration for an Alphaserver 1200 as a backup. It is straightforward to
implement such an environment, but does not affect the overall discussion.

10 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

 ...

DISK$CLUSTER_SCRATCH DISK$CLUSSCRATCH:

CLUSTERNAME "Online Operations Center"

LNM$SYSCLUSTER Clusterwide

 ...

SITENAME ANIMAL

DISK$SITE_SCRATCH DISK$ANIMALSCRATCH:

LNM$SYSTEM Site ANIMAL

 ...

DISK$SCRATCH DISK$HORSESCRATCH:

LNM$SYSTEM Node HORSE

 ...

DISK$SCRATCH DISK$ZEBRASCRATCH:

LNM$SYSTEM Node ZEBRA

 ...

DISK$SCRATCH DISK$SHEEPSCRATCH:

LNM$SYSTEM Node SHEEP

 ...

SITENAME PLANT

DISK$SITE_SCRATCH DISK$PLANTSCRATCH:

LNM$SYSTEM Site PLANT

 ...

DISK$SCRATCH DISK$SPRUCESCRATCH:

LNM$SYSTEM Node SPRUCE

 ...

DISK$SCRATCH DISK$PINESCRATCH:

LNM$SYSTEM Node PINE

 ...

DISK$SCRATCH DISK$WILLOWSCRATCH:

LNM$SYSTEM Node WILLOW

Figure 2 – Hierarchical dependencies and inheritance – Cluster/Site/System

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 11

© Copyright 2004, Hewlett Packard Development Company, L.P.

 ...

DISK$SCRATCH DISK$SCRATCH1:

DATABASE MASTERFILES:[DATABASE]MASTER.IDX

LNM$SYSTEM (SYSTEM) System

 ...

MASTERFILES DISK$ALPHAUSERS:[PRODUCTION.]

FIRMNAME "Alpha Accounting Corp."

DISK$SCRATCH DISK$ALPHASCRATCH:

LNM_FIRM_ALPHA (SYSTEM) Firm

 ...

MASTERFILES DISK$ALPHAUSERS:[DEVELOPMENT.]

DISK$SCRATCH DISK$ALPHAITSCRATCH:

DEPARTMENT "IT Development"

LNM$GROUP_000100 ([ALPITDV,*]) Group

 ...

LNM$JOB_815866C0 ([ALPITDV,JONES]) Job

 ...

MASTERFILES DISK$ALPHA_ITUSERS:[JONES.]

DEPARTMENT "Accounts Payable"

LNM$PROCESS PID 2041AF64 ([ALPITDV,JONES]) Process

 ...

LNM$PROCESS PID 20416737 ([ALPITDV,JONES]) Process

 ...

LNM$JOB_816B8580 ([ALPITDV,LEMAS]) Job

 ...

LNM$PROCESS PID 2041B344 ([ALPITDV,LEMAS]) Process

 ...

DEPARTMENT "Accounts Payable"

LNM$GROUP_002654 ([ALPAPAY,*]) Group

 ...

DISK$SCRATCH DISK$ALPHAAPSCRATCH:

LNM$JOB_81711B80 ([ALPAPAY,SMITH]) Job

 ...

DISK$SCRATCH DISK$ALPHAAPSCRATCH2:

LNM$PROCESS PID 20419E62 ([ALPAPAY,SMITH]) Process

 ...

MASTERFILES DISK$BETAUSERS:[PRODUCTION.]

FIRMNAME "Beta Catering, PLC"

DISK$SCRATCH DISK$BETASCRATCH:

LNM_FIRM_BETA (SYSTEM) Firm

Figure 3 – Hierarchical Dependencies and Inheritance – Firm/Group/User

12 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

Physical Configurations

Simple Configuration

Simple systems are employed for a variety of reasons, including cost and space. A large,
complex system may not be justified or economically feasible for small organizations or for
small applications. A small system may also be used in a large organization or for a large
application to support development or to prototype applications.

Small systems, such as a DS10 or similar small workstation or server, are frequently used for
testing installation, startup, shutdown, and restart procedures. These operations are
extremely disruptive to a large production environment.

The affordability of relatively inexpensive, small OpenVMS platforms permits developers and
maintainers to perform these highly disruptive tests with minimal impact on production
systems and with a high degree of certainty that the full-scale tests will be successful.

Small systems are also used for projects in the proof-of-concept stage, where economics can
make the difference between feasibility and infeasibility.

Advanced Configuration

Larger configurations present more options than small systems. While small systems may be
restricted to one or more directly attached disks, a larger configuration may include a mix of
directly attached disks (directly attached to the integral SCSI adapters on systems such as
the GS-series and ES-series), local disks (CI or SAN attached), and remote SAN or network-
attached storage. Each of these storage categories has different operational and
performance characteristics.

Different user groups may be assigned to login environments with different attributes,
depending upon a multitude of factors. Some factors will be technical in nature (such as a
need for large scratch areas, or a need for shadowed and/or mirrored storage) and some will
be organizational or political in nature (one department may have contributed the funds for a
particular storage facility). In either event, the environment for one group of users (or in some
environments, a particular user) will determine the need for that group’s default environment
to differ from some other group’s default environment.

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 13

© Copyright 2004, Hewlett Packard Development Company, L.P.

Applications Environments

User Disks

During login processing, LOGINOUT.EXE determines a user’s default disk from the contents
of the user’s login profile, located in the user authentication file (referred to as the UAF).
LOGINOUT.EXE populates SYS$LOGIN and SYS$LOGIN_DEVICE in the user’s job logical
name table as executive mode logical names (making them available to and usable by
privileged images).

Scratch Space

Similarly, LOGINOUT.EXE uses the same information to populate the contents of
SYS$SCRATCH.

Access to Data

When creating a user’s process, LOGINOUT.EXE also attaches a series of rights list
identifiers to the process. These identifiers come from two sources: a set of identifiers that
reflect the origin of the process (e.g., BATCH, INTERACTIVE, REMOTE) and those identifiers
associated with the user’s UAF entry in RIGHTSLIST.12

12 The rights list identifiers associated with a process are used to determine access rights to system

resources beyond those granted through the normal System/Owner/Group/World and privilege access
mechanisms. The details of the access checking scheme and how identifiers are used is described the
“OpenVMS Guide to System Security”.

14 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

Default Inheritance

While not often appreciated, the OpenVMS login processing provides an easy and natural
idiom for using at least three levels of inheritance, clusterwide, system, and group.

Concealed, rooted logical names,13 coupled with the conventions for directory names in
FILES-11, provide a natural naming convention and structure for inheritance, as illustrated in
Figure 4.

Architectural Concepts

Architects understand that building designs must deal correctly with the forces of nature. A
realizable design must always address the realities of construction, the details of the physical
materials, and the techniques of fabrication. Designs do not exist in a vacuum, devoid of
context.

Systems architecture is a hybrid discipline. In some sense, computer software is totally
malleable, purely a creation of the mind of its creator. However, some architectural principles
do apply. One such principle is that the overall architecture will only work if the details are
correct, both architecturally and in the resulting implementation. For example, Digital’s RT-11
(with the “DK:” device) and Microsoft Windows™ (with the “C:” device) have been hobbled
when compared to a system, such as OpenVMS, that hides the identity of the system device
behind a logical name.

The principles that apply to the quality of pictures when enlarged or reduced have their
analog in the world of OpenVMS configurations. Reducing the size of a picture makes detail
imperceptible, but it is still there. When enlarging a picture, detail cannot be invented.

The logical environment used for a larger, clustered system, can be easily reconfigured to
transparently provide access to the same resources in a smaller workstation or development
system (in effect, the analog to reducing a picture – no loss of picture quality occurs).
However, an environment designed for a small system is frequently not suitable when used
with a larger configuration (the analog of enlarging a picture – the picture loses sharpness
and clarity as it is enlarged). The inherent problem is that the environment designed for the
small system does not address the issues that occur in larger configurations.

To an even greater degree, different members of a cluster, whether a conventional
OpenVMS Cluster system or a distributed, multi-site disaster tolerant OpenVMS Cluster
system, offer the same challenge along a different axis.

13 Much has been written on the use of concealed, rooted logical names, including this author’s articles on

OpenVMS.org, accessible directly or though the author’s www site at
http://www.rlgsc.com/publications.html.

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS Clusters 15

© Copyright 2004, Hewlett Packard Development Company, L.P.

 ...

DISK$CLUSTER_SCRATCH DISK$CLUSSCRATCH:

LNM$SYSCLUSTER Clusterwide

 ...

SITENAME ANIMAL

DISK$SITE_SCRATCH DISK$ANIMALSCRATCH:

LNM$SITE Site ANIMAL

 ...

DISK$SCRATCH DISK$HORSESCRATCH:

LNM$SYSTEM Node HORSE

 ...

DISK$XYZ_SITE_SCRATCH DISK$SITE_SCRATCH:[ACCTPAY.]

DISK$XYZ_SCRATCH DISK$SCRATCH:[ACCTPAY.]

DISK$XYZ_CLUSTER_SCRATCH DISK$CLUSTER_SCRATCH:[ACCTPAY.]

LNM$GROUP_000100 ([ACCTPAY,*]) Group

 ...

DISK$SCRATCH DISK$ZEBRASCRATCH:

LNM$SYSTEM Node ZEBRA

 ...

DISK$XYZ_SITE_SCRATCH DISK$SITE_SCRATCH:[ACCTPAY.]

DISK$XYZ_SCRATCH DISK$SCRATCH:[ACCTPAY.]

DISK$XYZ_CLUSTER_SCRATCH DISK$CLUSTER_SCRATCH:[ACCTPAY.]

LNM$GROUP_000100 ([ACCTPAY,*]) Group

 ...

SITENAME PLANT

DISK$SITE_SCRATCH DISK$PLANTSCRATCH:

LNM$SITE Site PLANT

 ...

DISK$SCRATCH DISK$SPRUCESCRATCH:

LNM$SYSTEM Node SPRUCE

 ...

DISK$XYZ_SITE_SCRATCH DISK$SITE_SCRATCH:[ACCTPAY.]

DISK$XYZ_SCRATCH DISK$SCRATCH:[ACCTPAY.]

DISK$XYZ_CLUSTER_SCRATCH DISK$CLUSTER_SCRATCH:[ACCTPAY.]

LNM$GROUP_000100 ([ACCTPAY,*]) Group

 ...

DISK$SCRATCH DISK$PINESCRATCH:

LNM$SYSTEM Node PINE

 ...

DISK$XYZ_SITE_SCRATCH DISK$SITE_SCRATCH:[ACCTPAY.]

DISK$XYZ_SCRATCH DISK$SCRATCH:[ACCTPAY.]

DISK$XYZ_CLUSTER_SCRATCH DISK$CLUSTER_SCRATCH:[ACCTPAY.]

LNM$GROUP_000100 ([ACCTPAY,*]) Group

Figure 4 – Inheritance with rooted, concealed logical names.

16 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

Tr
an

sl
at

io
n

of

D
I
S
K
$
C
L
U
S
T
E
R
_
S
C
R
A
T
C
H

D
I
S
K
$
C
L
U
S
S
C
R
A
T
C
H

D
I
S
K
$
C
L
U
S
S
C
R
A
T
C
H

D
I
S
K
$
C
L
U
S
S
C
R
A
T
C
H

D
I
S
K
$
C
L
U
S
S
C
R
A
T
C
H

Tr
an

sl
at

io
n

of

D
I
S
K
$
S
I
T
E
_
S
C
R
A
T
C
H

D
I
S
K
$
A
N
I
M
A
L
S
C
R
A
T
C
H

D
I
S
K
$
A
N
I
M
A
L
S
C
R
A
T
C
H

D
I
S
K
$
P
L
A
N
T
S
C
R
A
T
C
H

D
I
S
K
$
P
L
A
N
T
S
C
R
A
T
C
H

Tr
an

sl
at

io
n

of

D
I
S
K
$
S
C
R
A
T
C
H

D
I
S
K
$
H
O
R
S
E
S
C
R
A
T
C
H

D
I
S
K
$
Z
E
B
R
A
S
C
R
A
T
C
H

D
I
S
K
$
S
P
R
U
C
E
S
C
R
A
T
C
H

D
I
S
K
$
P
I
N
E
S
C
R
A
T
C
H

Tr
an

sl
at

io
ns

 a
cc

or
di

ng
 to

 H
ie

ra
rc

hi
ca

l L
og

ic
al

 N
am

e

Tr
an

sl
at

io
n

of

S
I
T
E
N
A
M
E

A
N
I
M
A
L

A
N
I
M
A
L

P
L
A
N
T

P
L
A
N
T

N
od

e

H
O
R
S
E

Z
E
B
R
A

S
P
R
U
C
E

P
I
N
E

Ta
bl

e
1

–
Tr

an
sl

at
io

ns
 fo

r t
he

 A
cc

ou
nt

s
Pa

ya
bl

e
G

ro
up

 ([
A

C
C

TP
A

Y,
*]

) d
iff

er
 d

ep
en

di
ng

 u
po

n
th

e

co
nt

en
ts

 o
f t

he
 h

ie
ra

rc
hi

ca
l l

og
ic

al
 n

am
e

ta
bl

e
st

ru
ct

ur
e

ill
us

tr
at

ed
 in

 F
ig

ur
e

4.

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS clusters 17

© Copyright 2004, Hewlett Packard Development Company, L.P.

Developing a logical environment that is transparent across different systems requires care.
In a clustered environment, the different member nodes must be fully interoperable, while still
being appropriate for the different members and/or sites comprising the cluster. In both
stand-alone and clustered systems, the logical environment must effectively embrace all
operational issues without imposing unneeded presumptions of organizational structure or
hardware configuration on any of the affected users (general users, developers, or system
managers).

Issues

Different systems have their own issues, many of which are addressed through the judicious
use of different elements in one of the login files, or the environment created by one of the
elements of the STARTUP process.

Physical Machine Characteristics

Significant differences exist among system models. A small DS10 may be limited to an
internal disk, and perhaps a small external storage shelf. A large GS1280 may have access
to a complex SAN, as well as multiple local disks. Intermediate sized systems will be
variations on the theme, with a hierarchy of storage, ranked by size, speed, latency, integrity,
and cost.

Applications Impact

File placement depends upon use. Data files that are used throughout a cluster must be
completely accessible throughout. On systems attached to a multi-site SAN, the
straightforward choice for widely shared files is on SAN-mounted volumes.

Conversely, there are other files on the other extreme of the spectrum. Process-private
temporary files are used only within a given image or process. A scratch file used by the
SORT/MERGE utility is a common member of this class of files. Scratch files have no context
or meaning outside of the moment, and need not be accessible to any other member of the
cluster. Nor do they need backup, shadowing, or any other data protection scheme. If the
process terminates for any reason, software or hardware failure, the files will, of necessity, be
recreated when the process is restarted.

Often, temporary files are of substantial size. Placing them on remotely shadowed volumes,
or volumes with full backup support, is a common source of overall system performance
problems.

Physical Location

One of the strengths of OpenVMS is that it allows the programmer and system manager to
generally ignore the actual location and configuration of mass storage. However, like any
other virtualization scheme, this information cannot be ignored; performance and other
issues merely move from one level to another.

18 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

It is tempting, but overly simplistic to consider the use of a SAN as a solution to all of the
performance questions which bedevil large configurations. While SAN technology is quite
effective, it cannot change the laws of physics. Some correlation between the function of
mass storage and its location is extremely beneficial to system performance.

Implementation Aspects

These issues, concepts, and concerns may seem abstract or theoretical. This is far from the
case. Examining the issues and concepts in the context of a particular example will help
bring them into focus.

Consider a firm with a disaster-tolerant OpenVMS Cluster system located at two sites, with
two systems at each site. To illustrate the full range of issues, let us assume that each of the
four systems is different, ranging from an enterprise-class machine at the high end (e.g. a
GS80 or GS1280), to departmental-class machines (e.g., ES4x) to small servers (e.g.,
DS10/DS20). A SAN is deployed at each site, and the systems take full advantage of the
mirroring and shadowing facilities of OpenVMS and the storage controllers to provide mass
storage.

User-Specific Configurations

The default value for SYS$SCRATCH created by LOGINOUT.EXE is the user’s default
directory, as contained in the UAF. This is far from an optimal decision for several reasons:

• the user’s default directory will likely be on a volume that is mirrored (within a site)
and/or shadowed (between sites). While conceptually simple, the reality is that there is
an overhead associated with both local mirroring and remote shadowing. In the case
of shadowing, the reality is that the inter-site interconnect has a finite bandwidth far
less than that available either within the computer room itself or on the system’s local
interconnect.

• scratch files are frequently high activity files.

• scratch files may be very large.

• scratch files generally have little meaning outside of the particular process or job that
created them.

A straightforward way to address this situation, while simultaneously using the configuration
to best advantage, would be to relocate the scratch directory somewhere else. One obvious
place is locally connected disks, namely disks connected directly to the individual system.
Whether the scratch disks support all processes on the machine or a single user is irrelevant.
The critical issue is access to an appropriate scratch area through the SYS$SCRATCH logical
name as translated from within a user’s individual process context.

So far, it seems quite simple. While this issue can sometimes be addressed at the level of an
individual user, it is more appropriate to address it in a hierarchical fashion. Scratch areas

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS clusters 19

© Copyright 2004, Hewlett Packard Development Company, L.P.

can generally be described on a group (department), set of departments, firm, or system
basis, with only a small customization for the individual user.

Group-Specific Configurations

At the highest level of the scratch volume, create a series of directories, one for each
department. These directories need to be accessible to all members of the group, either
through rooted, concealed group logical name table entries for DISK$SCRATCH, or through
rooted, concealed system logical name table entries for DISK$GROUP_SCRATCH, or other
means.

In the SYLOGIN.COM file, we can redefine SYS$SCRATCH in the job logical name table
(LNM$JOB) to point to the correct location.14

Thus, each group of users will seem to be pointing at their own scratch volume. For example,
in the System or Firm Logical Name Tables we have definitions for DISK$SCRATCH as
follows:

Group Scratch Device
Value of DISK$SCRATCH in Group

Logical Name Table

ITDevelopers DISK$NODESCRATCH DISK$NODESCRATCH:[ITDEVELOPERS.]

Accounting DISK$NODESCRATCH DISK$NODESCRATCH:[ACCOUNTING.]

Operations DISK$NODESCRATCH DISK$NODESCRATCH:[OPERATIONS.]

Table 2 – System/Firm definition variations in translation of DISK$SCRATCH

14 The ASSIGN/JOB DISK$GROUP_SCRATCH:[USERNAME] SYS$SCRATCH command defines a

supervisor mode name in LNM$JOB. The definition of SYS$SCRATCH generated by LOGINOUT.EXE is
in executive mode. In most user situations, this difference is of no import.

If the dichotomy caused by having the supervisor and executive mode logical names pointing to
different directories is an issue, it is possible to enable the CMEXEC privilege in the user’s default
privilege field in the UAF (but not in the authorized privilege field). SYLOGIN.COM will then execute with
the CMEXEC privilege initially enabled. In this case, SYLOGIN.COM should immediately redefine the
SYS$SCRATCH logical name in LNM$JOB as an executive mode logical name, and then downgrade the
process by removing the CMEXEC privilege with the SET PROCESS/PRIVILEGE=(NOCMEXEC)
command. Alternatively, a small privileged image could perform the same functionality with more
restrictions.

If done properly, the preceding is not a security hazard. However, one should exercise prudence. In
most cases, SYS$SCRATCH can be defined as a supervisor mode logical name with no ill effects.

20 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

The preceding may appear rather obvious, and indeed it is a rather simple example.
However, suppose that as the system activity increases, we realize that the space and
performance requirements of the scratch space for accounting have been underestimated.
We decide to allocate a dedicated stripe set to servicing the large scratch space
requirements of the Accounting group. With the above structure, only a single logical name
needs to be modified, namely the definition of DISK$NODESCRATCH in the Accounting
group’s group logical name table as shown below.

Group
Scratch Device (value
of DISK$SCRATCH)

Value of DISK$SCRATCH in Group
Logical Name Table

ITDevelopers DISK$NODESCRATCH DISK$SCRATCH:[ITDEVELOPERS.]

Accounting DISK$NODESCRATCH1 DISK$SCRATCH:[ACCOUNTING.]

Operations DISK$NODESCRATCH DISK$SCRATCH:[OPERATIONS.]

Table 3 – Translation of DISK$SCRATCH when System/Firm level definitions are overridden in the
Accounting Department Group Logical Name Table.

The system does not need to be restarted, only the users in the Accounting group must be
removed from the individual cluster member momentarily while the logical name is changed
and the files migrated to the new location.15 It is important to note that the impact of the
change is very limited. Since the changes only affect the realization of the conceptual
environment on the actual environment, only the system management group needs to be
involved with this change.16 Users will be unaffected, and in many cases unaware of the
change, provided that they do not examine configuration-specific information not directly
relevant to their applications.17

15 Though not strictly required for scratch files, it is highly recommended. Copying the current contents of

the old scratch device to the new scratch device during the changeover should not take long, and will
prevent many problems for users who use SYS$SCRATCH as a storage place for transient files (e.g.,
test files generated during debugging sessions).

16 An automatic procedure is useful for generating the group directory trees from a reliable roster of group
members (e.g., an automatically generated and parsed listing of the system UAF).

17 While users can use system services and DCL lexical functions to see the actual difference in their
environment, there is no normal reason for them to do so. Done properly, the differences should be
transparent.

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS clusters 21

© Copyright 2004, Hewlett Packard Development Company, L.P.

Site-Specific Configurations

The preceding discussion addressed user- or group-specific scratch file locations. A similar
technique can be used to identify a site-specific resource, such as a site-local scratch disk.

In its most primitive sense, a site-specific scratch location can be identified by the creation of
a single name identifying the site that the system is associated with.
SYS$MANAGER:SYLOGIN.COM (or the group logins, where appropriate) can then construct
the logical name values appropriate for a particular site.

This approach allows the flexible provisioning of multiple levels of resources in a logically
consistent manner. For example, three levels of scratch space can be made available to
users and applications, each with different characteristics, as follows:

Name Characteristics Restrictions

DISK$SCRATCH Machine local Only available on a single
system

DISK$SITE_SCRATCH Site local SAN connected,
topologically local to each
system

DISK$CLUSTER_SCRATCH Clusterwide SAN connected, shared
with all cluster members

Table 4 – Scratch Resources by Location, Connection, and Accessibility

Company-Wide Defaulting

In a similar fashion, a hierarchical environment can be exploited to reduce the complexity and
redundancy of applications. Suppose several sibling organizations share a hierarchically
structured environment.18 The same techniques traditionally used to support the differences
between groups can be used to separate and support the parallel environments.

The parallel environments may represent subsidiaries or divisions of the same organization
using common applications, different departments within a division, or customers of a service
bureau. From an environmental perspective, the similarities far outweigh the differences.

18 Conceptually, it does not matter if the actual systems involved are separate stand-alone systems

maintained by common managers or applications developers, a single consolidated server, or an
OpenVMS cluster comprised of many individual systems.

22 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

In creating a hierarchical structure to bridge department-level differences, we would use the
group logical name table (LNM$GROUP). Users, who belong to different, yet parallel
environments, require us to create a new category or level,19 for example Firm (in this
narrative, we will refer to it as LNM_FIRM).

Logical names reflecting the company-wide environment would be inserted into LNM_FIRM.
In SYS$MANAGER:SYLOGIN.COM we would insert LNM_FIRM20 in the logical name search
path (LNM$FILE_DEV in LNM$PROCESS_DIRECTORY) between the group and system-wide
logical name tables. Each group would be uniquely identified with a particular firm.21

It is admittedly simplistic, but this structure allows the creation of parallel application
environments with minimal effort and minimal code differences between different branches of
the tree.

The same process can be used to implement testing environments. It is admittedly
expansive, but this approach can leverage the seemingly simple OpenVMS UAF, rights list,
and logical name facilities to support large numbers of parallel development, test, and
production environments for similar yet separate organizations on a single integrated
OpenVMS Cluster system.

Company-Wide Constant Data

It is obvious that brief information specific to a particular sibling company can be stored in
LNM_FIRM. Examples of such information are the name of the firm or the locations of
company-wide resources or files.

Application-Wide Defaulting

The same principles that apply to individual subsystems apply to individual users or groups of
users. The names of files and commonly used constants can be contained in an application-
specific logical name table, and that name table can be inserted in one of the active search
paths.22 The benefits of this technique include:

19 The logical name hierarchy in a baseline OpenVMS is cluster, system, group, job, and process.

20 Paralleling the design of the OpenVMS logical name facility, LNM_FIRM would be a name located in
LNM$PROCESS_TABLE containing a pointer to the name of the actual firm-wide logical name table for
that particular process. The protection on LNM_FIRM must also be set appropriately.

21 Each group belongs to an identifiable firm. Thus, it is possible to identify the correct firm-wide logical
name table through a group-wide login script, the contents of the group logical name table, a rights list
identifier, or a file in a common group-wide directory.

22 If an entire community makes use of a particular application, it may make sense for that application’s
logical name table to be included at a higher level in the hierarchy than an individual user (e.g. the firm
or group).

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS clusters 23

© Copyright 2004, Hewlett Packard Development Company, L.P.

• easier maintenance – only one copy of the definition to use

• fewer logical names in the process or job logical name tables23

• faster logins as the command files defining the logical names need not be executed at
each login

• faster SPAWN operations, as the voluminous process logical name table need not be
copied to the sub-process each time a process is spawned.

Logical names used by different applications should not overlap. If the logical names used by
pre-existing applications overlap, changing the sequence of name tables in LNM$FILE_DEV
can be used to resolve the problem.

System Resources

The location of scratch space is but one example of an instance where the location or identity
of system resources can be managed through the use of logical names.

Naming Conventions

Names that will be used globally should be named separately from names that are unique to
a particular process or application. Care should be exercised to allow the same mechanisms
to be used by different groups or ISVs. One possible way to avoid naming conflicts is to use
the registered Internet domain names as the leading part of the logical name.

Summary

Presenting a conceptually consistent, although not necessarily identical user-perceived
environment, is a powerful approach when implementing OpenVMS systems, whether stand-
alone or as members of OpenVMS Cluster systems.

Hierarchical environments provide a powerful way to express the differences while retaining
common elements. The source of the differences does not matter. The differences may be
matters of mass storage configuration, as in the SYS$SYSROOT hierarchy used by OpenVMS
itself, or the differences may reflect the management structure of the organization.
Hierarchical environments allow the differences between disparate systems, and the
differences in organizations, to be hidden from users and applications. The greater the
disparity between the underlying systems or organizations, the greater the leverage of using

23 Admittedly, memory consumption for logical name tables is not the concern for system performance

that it once was. However, 200 logical names for each user on a large machine is still a potential
performance issue when each of several hundred users defines a full complement of the names.

24 HP OpenVMS Technical Journal Volume 3 January 2004

© Copyright 2004, Hewlett Packard Development Company, L.P.

different, yet conceptually identical, environments to provide users and applications with a
perceived identical computing context.

Using inheritance to dynamically instantiate logically identical user environments on
dramatically different systems simplifies system management, reduces the cost of system
management, and increases system availability. This method can be of even greater use to
the end-user and system manager than to the base operating system and layered products.

Bibliography

HP OpenVMS DCL Dictionary: A–M, © 2003, Order #AA-PV5KJ-TK, September 2003

HP OpenVMS DCL Dictionary: N–Z, © 2003, Order #AA-PV5LJ-TK, September 2003

HP OpenVMS Systems Manager’s Manual, Volume 1: Essentials,
Order #AA-PV5MH-TK, September 2003

HP OpenVMS Systems Manager’s Manual, Volume 2: Tuning, Maintaining, and
Complex Systems, Order #AA-PV5NH-TK, September 2003

HP OpenVMS System Services: A–GETUAI, © 2003, Order #AA-QSBMF-TE,
September 2003

HP OpenVMS System Services: GETUTC-Z, © 2003, Order #AA-QSBNF-TE,
September 2003

OpenVMS Guide to System Security, Order # AA-Q2HLF-TE, June 2002

OpenVMS User Manual, Order #AA-PV5JD-TK, January 1999

OpenVMS Version 7.2 New Features Manual, © 1999, Order #AA-QSBFC-TE

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 1”,
http://www.openvms.org/columns/gezelter/logicalnames1.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 2”,
http://www.openvms.org/columns/gezelter/logicalnames2.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 3”,
http://www.openvms.org/columns/gezelter/logicalnames3.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 4”,
http://www.openvms.org/columns/gezelter/logicalnames4.html

Gezelter, Robert “The OpenVMS Consultant: Logical Names, Part 5”,
http://www.openvms.org/columns/gezelter/logicalnames5.html

http://www.openvms.org/columns/gezelter/logicalnames1.html
http://www.openvms.org/columns/gezelter/logicalnames2.html
http://www.openvms.org/columns/gezelter/logicalnames3.html
http://www.openvms.org/columns/gezelter/logicalnames4.html
http://www.openvms.org/columns/gezelter/logicalnames5.html

Gezelter, R Inheritance Based Environments in OpenVMS Systems and OpenVMS clusters 25

© Copyright 2004, Hewlett Packard Development Company, L.P.

Goldenberg, R, Kenah, L “VAX/VMS Internals and Data Structures – Version 5.2”, ©
1991, Digital Equipment Corporation

Goldenberg, R, Saravanan, S “VMS for Alpha Platforms: Internals and Data Structures,
Preliminary Edition, Volume 3, © 1993, Digital Equipment Corporation, ISBN#1-
55558-095-5

Goldenberg, R, Dumas, D, Saravanan, S “OpenVMS Alpha Internals: Scheduling and
Process Control”, © 1997, Digital Equipment Corporation, ISBN#1-55558-156-0

List of Figures

Figure 1 Five Illustrative Independent Axes of Variation

Figure 2 Hierarchical Dependencies and Inheritance – Cluster/Site/System

Figure 3 Hierarchical Dependencies and Inheritance – Firm/Group/User

Figure 4 Rooted Logical Names to Establish Inheritance Hierarchies

Biography

Robert Gezelter, CDP, CSA, CSE, Software Consultant, guest lecturer and technical
facilitator has more than 25 years of international consulting experience in private and public
sectors. He has worked with OpenVMS since the initial release of VMS in 1978, and with
OpenVMS Cluster systems since their announcement in 1982.

Mr. Gezelter received his BA and MS degrees in Computer Science from New York
University. He also holds the HP CSA and CSE accreditations relating to OpenVMS.

Mr. Gezelter is a regular guest speaker at technical conferences worldwide such as HPETS
(formerly DECUS). His articles have appeared in Network World, Open Systems Today,
Digital Systems Journal, Digital News, and Hardcopy. He is also a contributor to the
Computer Security Handbook, 4th Edition, Wiley, 2002. Many of his publications and
speeches are available through his firm’s www site at http://www.rlgsc.com.

His firm's consulting practice emphasizes in-depth technical expertise in computer
architectures, operating systems, networks, security, APIs, and related matters.

His clients range from the Fortune 10 to small businesses, locally, nationally, and
internationally on matters spanning the range from individual questions to major projects.

He can be reached at <gezelter@rlgsc.com>.

http://www.rlgsc.com/default.html?Source=OpenVMSTechJournal200401

The source for solutions to all

sizes & varieties of problems

Internationally respected author

and speaker

OpenVMS, DECnet, Internet,

PostScript, Windows, MS–DOS,

RSX-11, and related areas

Realtime, Process Control,

Simulation, and Online Systems

System Management, Security,

& Systems Programming

On the phone, or in-person

R
e
p
u
t
a
t
i
o
n

Robert Gezelter
SOFTWARE CONSULTANT

In NY State: 718 – 463 – 1079
800 – 688 – 2990

E-mail: sales@rlgsc.com
Flushing, NY 11358
35 – 20 167th Street

Suite 215

Cards
Welcome

copyright 2004, Hewlett Packard Development Company, L.P.
Reprinted with Permission

	Inheritance Based Environments in
	Stand-alone OpenVMS Systems and OpenVMS Clusters
	Abstract
	Introduction
	Philosophic Basis
	Clusterwide Variations
	System Configuration Variations
	Site-Specific Variations
	Firm/Group/User-Specific Variations
	Application-Specific Variations

	One Parameter, One Line of Code
	Dependency
	Inheritance
	Hiding the Physical and the Organizational
	Physical Configurations
	Simple Configuration
	Advanced Configuration

	Applications Environments
	User Disks
	Scratch Space
	Access to Data

	Default Inheritance
	Architectural Concepts
	Issues
	Physical Machine Characteristics
	Applications Impact
	Physical Location

	Implementation Aspects
	User-Specific Configurations
	Group-Specific Configurations
	Site-Specific Configurations
	Company-Wide Defaulting
	Company-Wide Constant Data
	Application-Wide Defaulting
	System Resources
	Naming Conventions

	Summary
	Bibliography
	List of Figures
	Biography

